2 research outputs found

    Evolutionarily Conserved Transcriptional Co-Expression Guiding Embryonic Stem Cell Differentiation

    Get PDF
    Understanding the molecular mechanisms controlling pluripotency in embryonic stem cells (ESCs) is of central importance towards realizing their potentials in medicine and science. Cross-species examination of transcriptional co-expression allows elucidation of fundamental and species-specific mechanisms regulating ESC self-renewal or differentiation.We examined transcriptional co-expression of ESCs from pathways to global networks under the framework of human-mouse comparisons. Using generalized singular value decomposition and comparative partition around medoids algorithms, evolutionarily conserved and divergent transcriptional co-expression regulating pluripotency were identified from ESC-critical pathways including ACTIVIN/NODAL, ATK/PTEN, BMP, CELL CYCLE, JAK/STAT, PI3K, TGFbeta and WNT. A set of transcription factors, including FOX, GATA, MYB, NANOG, OCT, PAX, SOX and STAT, and the FGF response element were identified that represent key regulators underlying the transcriptional co-expression. By transcriptional intervention conducted in silico, dynamic behavior of pathways was examined, which demonstrate how much and in which specific ways each gene or gene combination effects the behavior transition of a pathway in response to ESC differentiation or pluripotency induction. The global co-expression networks of ESCs were dominated by highly connected hub genes such as IGF2, JARID2, LCK, MYCN, NASP, OCT4, ORC1L, PHC1 and RUVBL1, which are possibly critical in determining the fate of ESCs.Through these studies, evolutionary conservation at genomic, transcriptomic, and network levels is shown to be an effective predictor of molecular factors and mechanisms controlling ESC development. Various hypotheses regarding mechanisms controlling ESC development were generated, which could be further validated by in vitro experiments. Our findings shed light on the systems-level understanding of how ESC differentiation or pluripotency arises from the connectivity or networks of genes, and provide a "road-map" for further experimental investigation

    Agouti NOD : identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells.

    No full text
    Penetrance of the complex of genes predisposing the nonobese diabetic (NOD) mouse to autoimmune diabetes is affected by the maternal environment. NOD.CBALs-Tyr(+)/Lt is an agouti-pigmented Chromosome 7 congenic stock of NOD/Lt mice produced as a resource for embryo transfer experiments to provide the necessary maternal factors and allow the easy identification of NOD (albino) embryo donor phenotype. CBcNO6/Lt, a recombinant congenic agouti stock already containing approximately 50% NOD genome, was used as the donor source of a wild-type CBA tyrosinase allele. When the incidence of diabetes was assessed after nine generations of backcrossing and one generation of sib-sib mating, significant reduction in diabetes development was observed. No difference in diabetes development was observed in Tyr/Tyr(c) heterozygotes, showing that protection was recessive. Analysis of diabetes progression in another NOD stock congenic for C57BL/6 alleles on Chromosome 7 linked to the glucose phosphate isomerase (Gpi1(b)) locus provided no protection, indicating that the diabetes resistance (Idd) gene was distal to 34 cM (D7Mit346). Approximately 5 cM of the distal congenic region overlaps a region from C57L previously associated with protection when homozygous. The delayed onset and reduced frequency of diabetes in the NOD.CBALs-Tyr(+)/Lt stock is an advantage when females of this stock are used as surrogate mothers in studies involving hysterectomy or embryo transfers. Indeed, a newly developed NOD embryonic stem (ES) cell line injected into NOD.CBALs- Tyr(+)/Lt blastocysts produced approximately 50% live-born mice, of which approximately 11% were chimeric. Presumably because of high genomic instability, no germline transmission was observed
    corecore